

Evaluation of Spray-on Rejuvenators **Section S3**

2022 Spring Sponsor Meeting *May 11, 2022*

Objective

 Evaluate over time the field performance of two spray-on rejuvenator products commercially available in the United States

Spray-on Rejuvenators

- Petroleum- or bio-based oils with chemical and physical characteristics selected to restore properties of hardened/oxidized asphalt binder in the surface layer
- Can be combined with emulsified asphalt binders (to produce rejuvenating fog seals) and/or other materials (e.g., polymers) to seal low-severity surface cracks and inhibit raveling

Materials – Section S3, Mississippi DOT

- Dense-graded mix with sand and gravel containing 25% RAP, constructed in 2012 (tenyear-old pavement)
- Asphalt content = 6.8% (PG 67-22 neat)
- Spray-on rejuvenator products were applied after Section S3 was subjected to a total of ≈20.0 million ESALs of traffic since construction

Surface Treatment	Composition	Product Use by Manufacturer Recommendation	Dilution Rate	Residual Application Rate
S3-A	Proprietary	Age-regenerating surface treatment	2:1	0.014 gal/yd ²
S3-B	Plant-based rejuvenator	Topical rejuvenating seal	Undiluted	0.020 gal/yd ²

Superpave Performance Grade Classification — *High-Temperature* observed change after treatment application

- Up to 24-month after treatment application, a decrease in the high pass/fail temperature of the control binder was observed.
 - □ *S3-A*: After 30-month of treatment application, the HT PG was higher than the control.
 - *S3-B*: After 30-month of treatment application, the HT PG was equal to the control.

Superpave Performance Grade Classification — Low-Temperature observed change after treatment application

- □ Up to 24-month after treatment application, a decrease in the low pass/fail temperature of the control binder was observed.
 - S3-A: After 30-month of treatment application, the LT PG was equal to the control.
 - S3-B: After 30-month of treatment application, the LT PG was higher than the control.

ΔT_c parameter – Low-Temperature observed change after treatment application

- □ Product S3-A improved ΔT_c (less negative) up to 24-month after treatment.
- Product S3-B improved ΔTc (less negative) 30-month after treatment.

Complex Modulus (|G*|) at 10 rad/s at 60°C FAA P-632 evaluation parameter

- Maximum rejuvenating capability of the applied spray-on rejuvenator products was achieved between 6 and 12 months of treatment application.
 - □ S3-A: 12-month, 59.5% decrease in |G*| of control.
 - S3-B: 6-month, 32.1% decrease in |G*| of control.
- 24 months of field aging was required to differentiate among products.
- After 30-month field aging interval:
 - □ S3-A: 0.4% decrease in |G*|of control.
 - S3-B: 14.6% decrease in |G*|of control.

Field Performance - Rut Depth versus ESALs

- □ Average rut depth for ≈1.3 million ESALs of traffic (≈31.3 million ESALs since construction)
 - □ S3-A = 5.2 mm
 - **□** S3-B = 3.2 mm
- Obtained field rut values were smaller than the rut depth limit of 12.5 mm

Field Performance - Roughness versus ESALs quantified using the International Roughness Index (IRI)

- □ Overall IRI for ≈1.3 million ESALs of traffic (≈31.3 million ESALs since construction)
 - □ S3-A = 94.6 in/mile
 - S3-B = 72.3 in/mile

Field Performance - Mean Profile Depth versus ESALs

- Overall MPD for ≈1.0 million ESALs of traffic (≈31 million ESALs since construction)
 - □ S3-A = 1.1 mm
 - S3-B = 1.1 mm

Conclusions

- After 30 months of the application of the spray-on rejuvenator products, the asphalt binder properties of the treated sections are equivalent or "improved" when compared to the control section.
 - This improvement was found as dependent of the spray-on product type, and was influenced by the characteristics of the asphalt material present in the surface of the section (e.g., binder type and chemistry, aging level).
- Spray-on rejuvenators can slow the rate of pavement aging caused by oxidation.
 - Could potentially be applied every three years to prolong pavement life.
- The 1-month (four-week) aging time proposed in the FAA P-632 procedure can be misleading for assessment of a spray-on rejuvenator product's long-term effectiveness.
 - ≈ 24 months of field aging was required to differentiate among products.

Next Steps

- To further monitor and evaluate the long-term performance of the applied products, and to capture the time interval where these products will lose effectiveness, the next field cores will be collected after
 - 42-month filed interval (05/16/2022)

Thank You

moraes@auburn.edu

